# Comparison of Catalyzed and Homogeneous Reactions of Hydrocarbons for Selective Catalytic Reduction (SCR) of NO<sub>x</sub>

Dmitri B. Lukyanov, Gustave Sill, Julie L. d'Itri, and W. Keith Hall<sup>2</sup>

Department of Chemistry, Materials Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Received October 26, 1994; revised January 18, 1995

When NO<sub>2</sub> (0.21% in He) was passed over CoZSM-5 or HZSM-5 at SVH =  $45,000 \, h^{-1}$ , equlibrium with NO + O<sub>2</sub> was approached at temperatures above 673 K. The reactions of NO<sub>2</sub> + CH<sub>4</sub>, NO<sub>2</sub> +  $CH_4$  +  $O_2$ , and NO +  $CH_4$  +  $O_2$  were compared over these catalysts and in the empty reactor. The latter two reactions yielded essentially identical results when catalyzed, as did NO<sub>2</sub> + CH<sub>4</sub> up to about 22% conversion of CH<sub>4</sub>, i.e., to the point where the oxygen supply became exhausted. Without added O2, NO appeared as a reduction product of NO2 along with N2. In the empty reactor, no N<sub>2</sub> was formed although NO<sub>2</sub> could be quantitatively reduced to NO; combustion of CH<sub>4</sub> with O<sub>2</sub> (or with NO) alone was not observed at temperatures less than 873 K, but light-off with NO<sub>2</sub> or  $NO_x + O_2$  occurred at about 723 K. In the absence of  $O_2$ , the homogeneous CH<sub>4</sub> conversion was limited to about 22% at 873 K where the conversion of NO2 to NO reached 100%. With added O<sub>2</sub>, conversion of CH<sub>4</sub> reached 62% at 873 K and approached 100% under more severe conditions. These data illustrate the key role played by NO2 in the selective catalytic reduction reaction. They also show that a catalyst is necessary for the formation of N<sub>2</sub> and emphasize the importance of O<sub>2</sub> in maintaining an adequate supply of NO2, particularly at temperatures above 800 K where equilibrium favors NO. When C<sub>3</sub>H<sub>8</sub> or i-C<sub>4</sub>H<sub>10</sub> was substituted for CH<sub>4</sub>, the order of reactivity was  $i-C_4H_{10} > C_3H_8 > CH_4$  in both the catalyzed and the homogeneous reactions. Moreover, in the empty reactor dehydrogenation to the corresponding olefins was found to be important with the former two; the mass balance did not close with CH4, possibly due to the formation of formaldehyde. © 1995 Academic Press, Inc.

## INTRODUCTION

In many ways selective catalytic reduction (SCR) of NO resembles a free radical combustion process. At room temperature the gas mixture is stable; no reaction can be detected on a laboratory time scale. As the temperature is raised to a critical "light-off" temperature, however, the catalytic oxidation of hydrocarbons and the conversion of  $NO_x$  to N are initiated. These processes increase rapidly with temperature until the hydrocarbon (in the presence of excess  $O_2$ ) is completely converted to  $CO_2 + H_2O$ . The  $NO_x$  is converted to  $N_2$  more rapidly than the hydrocarbon to  $CO_2$  at low conversions, but slows as the  $NO_x$  concentration falls. Complete conversion of NO to  $N_2$  may be attained at reasonable space velocities over a range of temperatures, but above 773 K the conversion falls (1). This fall-off in  $N_2$  yield may be related to the shift in the equilibrium of the  $NO_2$  is heavily favored to the regime where  $NO_2$  is heavily favored to the regime where NO becomes dominant.  $NO_2$  was found to be more reactive and slightly more effective than NO itself (1) even in the presence of a large excess of  $O_2$ .

Evidence that free radical processes are occurring stems from the observations of Cowan et al. (2a). They observed a first-order isotope effect in the rate of SCR when CD<sub>4</sub> was substituted for CH<sub>4</sub>, indicating that breaking a C-H bond is rate limiting in the formation of N<sub>2</sub>. An analogous isotope effect occurred in the methane coupling reaction (2b), a well-documented free radical process. Further support stems from the work of Vannice and coworkers (3), who found that a typical methane coupling catalyst was effective for SCR with CH<sub>4</sub>. Finally, recently published papers from this laboratory (4a, 4b) have established a correlation between the rates of N<sub>2</sub> and CO<sub>2</sub> formation which is independent of the hydrocarbon employed. The data suggested that NO<sub>x</sub> participates selectively in the combustion process and that the two reactions are coupled. It is shown herein, confirming earlier work (1, 5), that in the absence of a reducing agent equilibrium NO<sub>2</sub>/NO ratios are obtained over CoZSM-5 and HZSM-5 at temperatures above about 673 K, whereas they were not in the absence of a catalyst or during SCR (5). In the steady state, NO<sub>2</sub> is continually being formed, but it is also being consumed in reactions with the hydrocarbon. Hence, the net NO<sub>2</sub> concentration may be far from equilibrium (5), emphasizing its importance as a reactant. We suggest, therefore, that the first step in the SCR reaction may be the facile conversion of NO to NO,

<sup>&</sup>lt;sup>1</sup> Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15260.

<sup>&</sup>lt;sup>2</sup> To whom correspondence should be addressed.

which then preferentially reacts with the hydrocarbon. In this process, it may be supposed that a carbonaceous nitrogen-containing radical is deposited on the catalyst in small amounts and that this in turn reacts with  $NO_x$  to form the N-N bond.

Our recent work (4a) led us to think that the SCR might be, at least partly, a homogeneous process. When various hydrocarbons of increasing complexity were studied, all of the data for a given space velocity and set of reactant concentrations could be correlated on a single curve with the single constraint that a constant flux of carbon over the catalyst be maintained. Small molecules like CH<sub>4</sub>, NO, NO<sub>2</sub>, and O<sub>2</sub> can easily penetrate the 5.5 Å pore systems of ZSM-5 and ferrierite, but other molecules such as isobutane or neopentane should be restricted by diffusion. Still others like 3,3-dimethylpentane and 3,3-diethylpentane should be excluded from these molecular sieves. Yet ferrierite catalysts, which are even more restrictive than ZSM-5, were actually more active than similar ZSM-5 catalysts (4a, 4b). These results were perplexing. The expected molecular sieving effects were not observed. Further, if diffusion was a problem, the rates of N<sub>2</sub> formation and of combustion should have decreased as the molecular size increased because the concentration of hydrocarbon would be decreased in proportion to the carbon number. In fact, the reactions of the large molecules were faster than those of the smaller ones. It was concluded, therefore, that either the reactions were occurring outside the zeolite pore system (on the external surface of the zeolite particles or homogeneously), or else the hydrocarbons must be being broken externally into parts small enough to enter the pores.

The present work was undertaken to better define the homogeneous reactions which may occur under the conditions of the SCR reactions of  $NO_x$ . To reach this goal, the homogeneous oxidation of hydrocarbons with  $NO_2$ , NO, and their mixtures with  $O_2$  has been studied and these results are compared with those obtained using Coand HZSM-5 catalysts.

### **EXPERIMENTAL**

Catalysts and Materials. The CoZSM-5-11-98 and HZSM-5-11-100 were prepared by conventional ion-exchange procedures from a parent NaZSM-5 template free preparation supplied by Air Products and Chemicals Co. Identification is provided by giving the cation form first, followed by the type of zeolite (ZSM-5), the Si/Al ratio, and finally the percent of the base exchange capacity occupied. Further details are supplied elsewhere (4a). The HZSM-5 was prepared by heating NH<sub>4</sub>ZSM-5-11-100 in flowing 10% O<sub>2</sub> in He at 673 K for 12 h.

The gases were all of high purity and except for He were used as received. He was passed through an oxy-

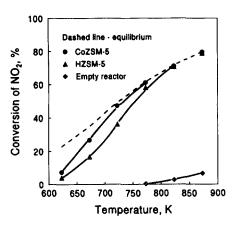
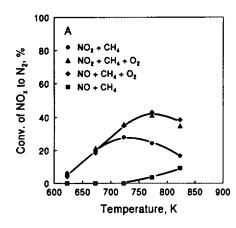



FIG. 1. Catalytic decomposition of  $NO_2$  at various temperatures vs the uncatalyzed reaction. 0.21%  $NO_2$  in He flow of 75 ml/min. Catalyst weights were 50 mg each.


absorbent Alltrap to insure removal of any traces of  $H_2O$ . Instrument grade  $CH_4$ ,  $C_3H_8$ , and  $i\text{-}C_4H_{10}$  in helium were provided by Matheson. The NO and NO<sub>2</sub> (1% in He) and O<sub>2</sub> (10% in He) were instrument grade and obtained from the same source. These gases were all of >99.9% purity and blended with He (Linde, >99.995% purity) to provide the desired gas mixtures.

Standard pretreatment. Aliquots of the catalyst were dehydrated in flowing  $O_2$  as the temperature was slowly increased (4 K/min) from 298 to 773 K and held there for 12 h before cooling to the preselected temperature. Finally the reactor was flushed with He for 15–30 min or until no trace of  $O_2$  could be detected by gas chromatography.

Reaction studies. These were carried out in a flow reactor with an empty volume in the hot zone of approximately 7 cm<sup>3</sup>. The catalyst was packed into a small fraction of this volume ( $<0.2 \text{ cm}^3$ ) near the center of the hot zone. The experimental equipment, the analytical procedure by gas chromatography, and treatment of the data are described in detail elsewhere (6a, 6b). Briefly, conversion of  $NO_2$  was determined by quantifying the yield of nitrogen-containing products (NO,  $N_2$ ). However, in the presence of  $O_2$ , it was not possible to quantify either NO or  $NO_2$ . All other components were determined directly by gas chromatography.

# **RESULTS**

Catalyzed reactions. The decomposition of  $NO_2$  into NO and  $\frac{1}{2}$   $O_2$  was studied and the results are presented in Fig. 1. Under our flow conditions (SVH = 45,000 h<sup>-1</sup>) chemical equilibrium was achieved over CoZSM-5-11-98 near 723 K and over HZSM-5-11-100 near 773 K. The uncatalyzed reaction in the empty reactor was very far from equilibrium at the highest temperature tested (873



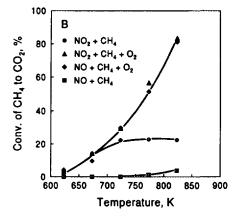



FIG. 2. Reduction of NO<sub>x</sub> (A), and oxidation of CH<sub>4</sub> (B), at various temperatures over 50 mg of catalyst CoZSM-5-11-98. The feed gas contained 0.21% NO<sub>2</sub> or NO, 0.28% CH<sub>4</sub>, and 2.6% O<sub>2</sub> (when used) in He at a flow rate of 75 ml/min. The percent conversion may be converted to TON (molecules  $\sec^{-1} \cos^{-1} \cos^{-1$ 

K). Hence, when  $NO_2$  is used as a feed in reactions with  $CH_4$  over these catalysts, both NO and  $NO_2$  will be present in the temperature range of interest for SCR. Probably the same may be said for SCR compositions of NO,  $CH_4$ , and excess  $O_2$ . These findings confirm and extend earlier work (1, 5) reported for CuZSM-5 catalysts. Therefore,  $NO_2$  as a feed is equivalent to the  $NO + O_2$  mixture of the same overall composition when used over Cu-, Co-, and HZSM-5. These results demonstrate that HZSM-5 has a redox function. It is therefore unnecessary to assume that acid catalysis plays a role in the SCR reaction as has sometimes been suggested. Perhaps this is not surprising since it has been known for many years that aluminum silicates readily form cation radicals from polynuclear aromatic hydrocarbons after exposure to  $O_2$  (6b).

As shown in Fig. 2A, NO<sub>2</sub> and NO were about equally effective for the formation of N<sub>2</sub> and for the combustion of CH<sub>4</sub> in the presence of excess O<sub>2</sub> as found previously (1) for isobutane over CuZSM-5. Over CoZSM-5, calculation of the conversion from the CH<sub>4</sub> which disappeared and from the CO<sub>2</sub> produced yielded essentially identical results (Fig. 2B). Without O<sub>2</sub> the same conversion levels were maintained with NO<sub>2</sub> at reaction temperatures up to about 723 K where further combustion ceased. These results can be readily understood since most of the NO<sub>2</sub> had been converted to the N<sub>2</sub> and NO at this temperature (Fig. 3). Thus a function of  $O_2$  is to establish a steady state NO<sub>2</sub> concentration. Significantly, NO and NO<sub>2</sub> produced essentially identical results over CoZSM-5 when O2 was added (Fig. 2), suggesting that NO<sub>2</sub> is essential in the initiation process.

In Fig. 4A, the conversions of  $NO_2$  to  $N_2$  when reacted with  $CH_4$  over CoZSM-5 and HZSM-5 are compared with the reaction in the empty tube. The same comparisons are made for the conversion of  $NO_2$  into NO in Fig. 4B.

Interestingly, without added  $O_2$  conversions to NO ultimately greatly exceeded those to  $N_2$ . Moreover, in the absence of a catalyst,  $N_2$  formation was not observed, i.e., the  $NO_2$  molecule can supply only one atom of O for reaction with a hydrocarbon. The formation of  $N_2$  requires the presence of a catalyst. Because of the limited amount of oxygen available, the conversion of  $CH_4$  leveled out at about 22% (Fig. 5A). When  $O_2$  was added to the  $NO_2$ , the data shown in Fig. 5B resulted. Comparison of Figs. 5A and 5B shows the pronounced effect of addition of  $O_2$  on methane conversion. The sharp increase on adding  $O_2$  occurs at the point where conversion of  $NO_2$  to  $N_2$  plus NO approached 100% (Figs. 3 and 4). Hence, this suggests that the main role of  $O_2$  is not to participate directly in the oxidation of methane, but to oxidize NO into  $NO_2$ .

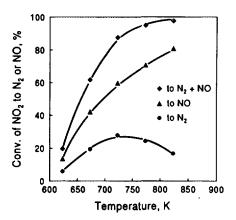
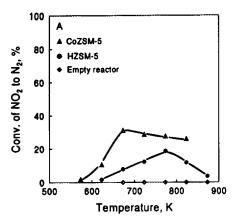




FIG. 3. Partition of products (Fig. 2) from NO<sub>2</sub> (0.21% in He) into N<sub>2</sub> and NO over CoZSM-5-11-98 at various temperatures. The flow rate was 75 ml/min and 50 mg of catalyst was used. The upper curve shows the sum of conversions to N<sub>2</sub> and NO, and the difference to 100% shows the NO<sub>2</sub> remaining in the gas exiting the reactor.



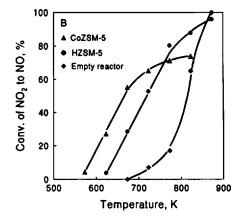



FIG. 4. Comparison of catalyzed and uncatalyzed reactions of NO<sub>2</sub> with CH<sub>4</sub> at various temperatures. (A) Conversion to N<sub>2</sub> and (B) conversion to NO. The feed gas contained 0.21% NO<sub>2</sub> and 0.28% CH<sub>4</sub> in He at a total flow rate of 75 ml/min; 100 mg of each catalyst was employed.

Note that while no N<sub>2</sub> was produced in the homogeneous reaction, the remainder of the data behaved very similarly. They differed mainly in the temperature required for the CoZSM-5, HZSM-5, and the empty reactor. This suggests that a common chemistry is occurring in the combustion reaction. Preliminary blank experiments for several hydrocarbons are reported elsewhere (4a, 4b).

Data obtained at high space velocity (112,500 h<sup>-1</sup>) for the reaction of NO<sub>2</sub> with CH<sub>4</sub> with varying O<sub>2</sub> concentration are listed in Table 1. A striking feature of these results is the relatively small effect on the conversions of NO<sub>2</sub> and CH<sub>4</sub> to N<sub>2</sub> and CO<sub>2</sub>, respectively, with the added O<sub>2</sub>. The ratio of the amount of O supplied by the NO<sub>2</sub> to the moles of CH<sub>4</sub> converted was virtually unity, vide infra (Row C). This emphasizes once again the key role of NO<sub>2</sub> in the reaction mechanism at low conversions. Note that the conversion to N<sub>2</sub> and to CO<sub>2</sub> increased only slightly (~5%) on adding O<sub>2</sub> to the reaction stream. Hence, NO<sub>2</sub>

must be supplying virtually all of the oxygen required under these reaction conditions, i.e., it both activates the  $CH_4$  and carries the combustion.  $N_2$  is formed concomitantly.

The data obtained for 0%  $O_2$  (Table 1) were extended by varying the temperature. These data are shown in Fig. 6 where the points at 673 K correspond to those in the table. Below this temperature, the conversion to nitrogen was nearly identical for the  $NO_2$  and the  $NO + O_2$  systems, as were the data for combustion of  $CH_4$ . As shown in Table 1, nearly equivalent amounts of  $NO_2$  and  $CH_4$  were converted to  $N_2$  and  $CO_2 + H_2O$ , respectively. The overall reaction

$$2NO_2 + CH_4 \rightarrow N_2 + CO_2 + 2H_2O$$
 [1]

shows that 2NO<sub>2</sub> must be reacted to completely oxidize one CH<sub>4</sub> molecule. Why then is the observed ratio close



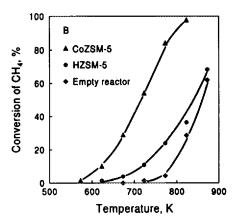



FIG. 5. Comparison of (A) the oxidation of  $CH_4$  by  $NO_2$  in the empty reactor with reactions catalyzed by 100 mg of CoZSM-5-11-98 and HZSM-5-11-100, and (B) the effect of adding  $O_2$  on these same reactions. The feed gas contained in (A) 0.21%  $NO_2$  and 0.28%  $CH_4$ , and in (B) 2.6%  $O_2$  was added.

| Mass Balances for Reaction of CH <sub>4</sub> with NO <sub>2</sub> | + O <sub>2</sub> ove                | er CoZSM | 1-5-11-9 | 8 at 673] | $\mathbf{K}^a$ |
|--------------------------------------------------------------------|-------------------------------------|----------|----------|-----------|----------------|
|                                                                    | Concentration of O <sub>2</sub> (%) |          |          |           |                |
| Step                                                               | 0                                   | 0.4      | 1.0      | 2.6       | 5.             |

0.759

0.703

1.08

1.265

0.787

0.731

1.08

0.766

0.684

1.12

0.807

0.759

1.05

0.794

0.731

1.09

TABLE 1

Conversion of NO<sub>2</sub> to NO (µmol/min)<sup>c</sup>

Conversion of NO2 used to form N2

Conversion of  $CH_4$  to  $CO_2 + H_2O$ 

 $NO_2$  converted to  $N_2$ 

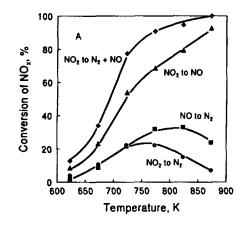
CH<sub>4</sub> converted

(umol/min)

 $(\mu \text{mol/min})^b$ 

В

C


to unity (Table 1) instead of 2.0 as predicted? This may be understood by recalling that a major fraction of the reacted NO<sub>2</sub> produced NO, not N<sub>2</sub>. These data are tabulated in Row D. To strike a carbon balance, the consumption of Row A must be divided by two (Eq. [1]) and that of Row D by four (Eq. [2]),

$$4NO_2 + CH_4 \rightarrow 4NO + CO_2 + 2H_2O$$
. [2]

When this was done, the corresponding values for CH<sub>4</sub> converted to CO<sub>2</sub> by Eqs. [1] and [2] are 0.380 and 0.316 μmol/min, respectively. These sum to 0.696 vs the value of 0.703 µmol/min listed in Row B. These give a ratio of 1.01 vs the 1.08 shown in Row C. Therefore, the experimental ratios near unity (instead of 2) result from the nearly equivalent amounts of CH<sub>4</sub> converted by Eqs. [1]

and [2]. Interestingly, the addition of up to 5.2% O<sub>2</sub> had no significant effect at conversions of <10% obtained at 673 K although this may not be true at higher temperatures where selectivity is known to fall (4a, 4b). This suggests (but does not prove) that the SCR reaction, which is initiated by the oxidation of  $CH_4$  to  $CH_3 \cdot (2a)$ , is effected by  $NO_2$ , not  $O_2$ , as is usually thought to be the case for homogeneous oxidations. This could happen if NO2 deposited a very reactive O atom on a surface site as it reacted to form NO.

As the temperature was raised (Fig. 6), selectivity was lost as more NO2 was converted into NO at the expense of the N<sub>2</sub> formed. Concomitantly the NO<sub>2</sub> concentration dropped (to zero at 873 K). Of course this could have been avoided had O<sub>2</sub> been added to the system as was done with the NO. Petunchi et al. (1) showed complete



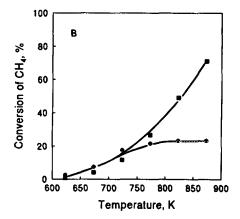
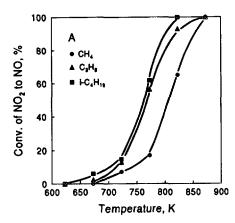




FIG. 6. Comparison of NO<sub>2</sub> (♠, ♠, ♦) vs NO + O<sub>2</sub> (■) in (A) SCR over 20 mg of CoZSM-5-11-98 and in (B) combustion of CH<sub>4</sub>. The gas compositions were NO<sub>2</sub> (0.21%), or NO (0.21%) + O<sub>2</sub> (2.6%), and CH<sub>4</sub> (0.28%) in He. The flow rate was 75 ml/min equivalent to SVH  $\sim$  112,000  $h^{-1}$ . At 673 K the TON for N<sub>2</sub> formation (based on total Co) was  $1 \times 10^{-3}$  for NO<sub>2</sub> and  $0.8 \times 10^{-3}$  molecules sec<sup>-1</sup> for NO + O<sub>2</sub>.

<sup>&</sup>lt;sup>a</sup> The reactant gas contained 0.21% NO<sub>2</sub> + 0.28% CH<sub>4</sub> + x% O<sub>2</sub> in He flowing at 75 ml/min over 20 mg of catalyst (corresponding to SVH =  $112,500 \text{ h}^{-1}$ ).

<sup>&</sup>lt;sup>b</sup> This conversion was equal to the overall conversion of CH<sub>4</sub>.

<sup>&</sup>lt;sup>c</sup> This conversion could be determined only in the absence of O<sub>2</sub>.



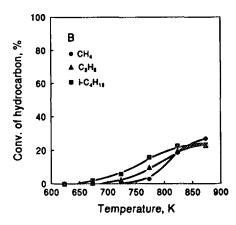



FIG. 7. Comparison of the uncatalyzed reactivities of CH<sub>4</sub>,  $C_3H_8$ , and i- $C_4H_{10}$  with NO<sub>2</sub> in He. The gas compositions were NO<sub>2</sub> (0.21%) and hydrocarbons (0.28%) in He. Flow rate was 75 ml/min and volume of the hot zone in the empty reactor was ~7 ml. (A) Conversion of NO<sub>2</sub> to NO; (B) conversion of the three hydrocarbons to all products.

conversion of NO<sub>2</sub> into N<sub>2</sub> over CuZSM-5 when O<sub>2</sub> was present and isobutane was used as the hydrocarbon. The combustion (Fig. 6B) leveled with the NO<sub>2</sub> system as the supply of this oxidizing agent approached zero. In the presence of NO +  $O_2$ , however, it swung sharply upward as was shown previously (1). The addition of O<sub>2</sub> would prevent the depletion of NO<sub>2</sub>, but the equilibrium level would decrease as the temperature is raised. At high space velocity the conversion of NO to N<sub>2</sub> in the presence of 2.6% O<sub>2</sub> passed through a maximum near 823 K (Fig. 6A). The combustion of CH<sub>4</sub> reached 70% at 873 K whereas the conversion of NO<sub>2</sub> to N<sub>2</sub> remained roughly constant at 24%. Moreover, when the space velocity was lowered by increasing the catalyst weight to 100 mg, the data obtained were quite similar except that higher conversions of NO and CH<sub>4</sub> were obtained. These data clearly illustrate the key role played by NO2 in the combustion of the hydrocarbon.

Homogeneous reactions of  $CH_4$ ,  $C_3H_8$ , and i- $C_4H_{10}$  with NO,  $NO_2$ , and  $O_2$ . These were studied in the empty reactor between 623 and 873 K. No N<sub>2</sub> was formed in any of this work, although NO2 reacted with these hydrocarbons to form NO and oxidation products. Moreover, combustion did not occur with O<sub>2</sub> (or with NO) alone below 873 K, although it did with NO<sub>2</sub> and on addition of NO<sub>2</sub> or NO to the  $O_2$ . In Fig. 7 the data obtained for methane, propane, and isobutane are compared. The hydrocarbon concentrations were kept constant at 0.28% while 0.21% NO<sub>2</sub> was used and only one O/NO<sub>2</sub> was available for reaction (Fig. 7A). Thus, the amount of oxidation products produced was limited by the supply of oxygen (Fig. 7B). Moreover, since  $i-C_4H_{10}$  and  $C_3H_8$  hydrocarbons contain four and three times as much carbon, respectively, as CH<sub>4</sub>, and since the NO<sub>2</sub> was constant, it appears strange that the conversions of all three hydrocarbons converge at about 25% in the 823-873 K range. This result was possible because olefins were produced from the  $C_3$  and  $C_4$  hydrocarbons, as shown in Fig. 8.

Light-off occurred with CH<sub>4</sub> and NO<sub>2</sub> in the empty reactor (Fig. 7B) between 723 and 773 K; the CoZSM-5 catalyzed reaction (Fig. 6B) was initiated between 623 and 673 K, i.e.,  $\Delta T \sim 100$  K. Aside from this translation, the curves look the same; they level out at about 24 to 26% conversion of CH<sub>4</sub> as the NO<sub>2</sub> supply becomes exhausted. These data support the idea that the rate-determining step for the catalytic and noncatalytic process is the same, i.e., the initiation step is the formation of CH<sub>3</sub>: from CH<sub>4</sub> by NO<sub>2</sub>. This process may be catalyzed by a redox center; the radical produced may remain on the surface or evaporate into the gas phase. Thus, so far as combustion is concerned, some of the reaction may be partly homogeneous even in the presence of a catalyst. Interestingly in this connection, the order of reactivities is iso-C<sub>4</sub>H<sub>10</sub> >  $C_3H_8 > CH_4$ , i.e., the same for the uncatalyzed as for the catalyzed reaction; it is typical of free radical chemistry (4).

The total combustion shown in Fig. 7B is limited by the availability of oxygen. All of the data shown in Fig 8A were obtained with a surplus of oxygen over that required for total oxidation to CO<sub>2</sub> + H<sub>2</sub>O. Nevertheless, the same order of reactivities was obtained. A steep rise in total conversion of CH<sub>4</sub> occurred above 773 K; a similar rise was found for the catalyzed reaction (Fig. 2B) above 673 K. Complementary data obtained in the presence of excess O<sub>2</sub> when NO was substituted for NO<sub>2</sub> are shown in Fig. 9. Comparison with Fig. 8A shows a surprisingly small decrease in conversion when NO is used. Presumably this is because NO must react with O<sub>2</sub> homogeneously, forming NO<sub>2</sub> above 773 K. Thus, a remarkable similarity exists for the combustion processes, whether catalyzed or not.

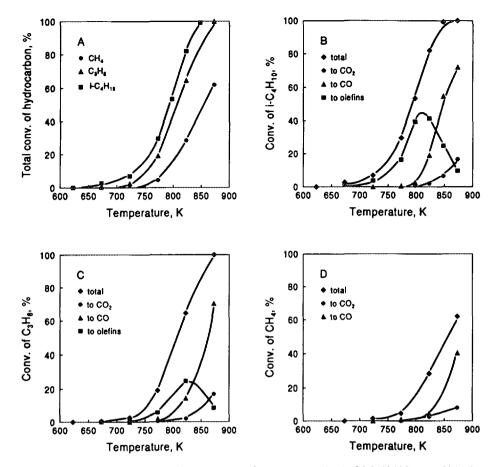



FIG. 8. (A) Relative reactivities of CH<sub>4</sub>,  $C_3H_8$  and i- $C_4H_{10}$  with a feed stream comprised of 0.21% NO<sub>2</sub>, 0.28% hydrocarbon and 2.6% O<sub>2</sub> in He. The flow rate was 75 ml/min (hot volume  $\approx 7$  ml); (B) distribution of oxidation products from i-butane in the experiments shown in (A); (C) same as (B), but for  $C_3H_8$ ; (D) same as (B), but for CH<sub>4</sub>.

The distribution of combustion products from i- $C_4H_{10}$ ,  $C_3H_8$ , and  $CH_4$  are shown in Figs. 8B, 8C, and 8D, respectively. Below 798 K very little CO or  $CO_2$  was

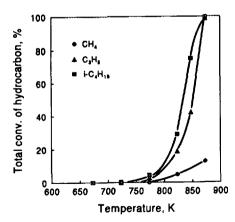



FIG. 9. Relative reactivities as in Fig. 8, but with NO replacing NO<sub>2</sub>.

produced from i-butane (Fig. 8B). The chief products were hydrocarbons, mainly butenes and propene. Even so, an important difference exists between the overall consumption of i-butane and the sum of the measured products. At higher temperatures the hydrocarbon formation decreased, presumably due to secondary oxidation to CO, CO<sub>2</sub>, and H<sub>2</sub>O. At 873 K,  $99^+\%$  of the carbon could be accounted for by these three products. Much the same thing can be said about the combustion of propane (Fig. 8C). Interestingly, in both cases the formation of CO was much higher than that of CO<sub>2</sub> at all temperatures, suggesting that the latter may be formed by secondary oxidation of the former. The carbon missing from the mass balances at the lower temperatures is presumably partial oxidation or amoxidation products. These would be lost by strong adsorption on the chromatographic column.

As is typical of homogeneous combustion processes, CH<sub>4</sub> was the most difficult to burn. Not only were higher temperatures required to achieve a given level of total conversion (Fig. 8A), but the conversion of NO<sub>2</sub> to NO

272

TABLE 2

Mass Balances for the Uncatalyzed Homogeneous Reaction of CH<sub>4</sub> with NO<sub>2</sub> in the Empty Reactor<sup>a</sup>

|      |                                                                                             | Temperature<br>(K) |      |  |
|------|---------------------------------------------------------------------------------------------|--------------------|------|--|
| Step |                                                                                             | 823                | 873  |  |
| A    | Overall conversion of CH <sub>4</sub> (µmol/min)                                            | 1.74               | 2.51 |  |
| В    | Overall conversion of NO <sub>2</sub> into NO (µmol/min)                                    | 4.57               | 7.03 |  |
| C    | Conversion of CH <sub>4</sub> into CO and CO <sub>2</sub> (µmol/min)                        | 0.46               | 1.24 |  |
| D    | Corresponding conversion of NO <sub>2</sub> into NO (µmol/min)                              | 1.74               | 4.25 |  |
| Е    | Conversion of CH <sub>4</sub> into unknown compounds,<br>µmol/min (A–C)                     | 1.28               | 1.27 |  |
| F    | Conversion of NO <sub>2</sub> into NO ( $\mu$ mmol/min)<br>(B-D) = O atoms unaccounted for. | 2.83               | 2.78 |  |
| G    | Ratio, $F/E$                                                                                | 2.21               | 2.19 |  |

<sup>&</sup>quot; The reactant gas contained 0.21%  $NO_2$  and 0.28%  $CH_4$  in the following at a rate of 75 ml/min. The corresponding rates were  $CH_4 = 9.375$   $\mu$ mol/min and  $NO_2 = 7.03$   $\mu$ mol/min.

was lowered correspondingly (Fig. 7A) when it was the only oxidizing agent present. CH<sub>4</sub>, unlike the other two hydrocarbons, cannot form olefins by oxidative dehydrogenation. The data of Fig. 8D also show a deficit in the carbon balance of 20 to 15% between 823 and 873 K. The formation of formaldehyde may have been partly responsible. An attempt to strike mass balances on carbon and NO<sub>2</sub> converted to NO, releasing O atoms, is made in Table 2. After deducting from the total CH<sub>4</sub> reacted (Step A) the amounts converted to CO and CO<sub>2</sub> (C), a substantial fraction was unaccounted for (E). Similarly, after deducting from the total conversion of  $NO_2$  (B), the amount required to furnish the oxygen needed to produce the CO and CO<sub>2</sub> formed (D), an amount that could not be accounted for could be deduced (F). The ratio of F/E =2.2 should be 4 for oxidation to CO<sub>2</sub>, 3 for oxidation to CO (Eqs. [1] and [2]), and 2 for H<sub>2</sub>C=O. Consequently, we infer that the missing CH<sub>4</sub> and NO<sub>2</sub> is probably mainly formaldehyde. This has been reported previously (8) when n-butane was oxidized in air in the presence of NO.

#### DISCUSSION

Many years ago Wojciechowski and Laidler (9) studied the homogeneous decomposition of  $CH_4$  and of  $C_2H_6$  in the presence of NO. They reported that NO acted as a catalyst for methane coupling and for the dehydrogenation of ethane to ethylene and  $H_2$ . They pointed out that NO is a stable free radical that can abstract an H from  $C_2H_6$  forming  $C_2H_5$ : + HNO.  $C_2H_5$ : then discharged an H· to become  $C_2H_4$  while the H· reacted with another  $C_2H_6$  to form  $H_2$  and  $C_2H_5$ :, establishing a chain process. The termination steps were suggested to be the reaction of HNO with  $C_2H_5$ : to re-form  $C_2H_6$  and release the NO. In a word, the stable free radical NO acted as a chain initiator forming  $C_2H_5$ : and the rather stable HNO, whereas the reverse reaction functioned as the chain termination step. With  $CH_4$ , initiation was by

$$CH_4 \rightarrow CH_3$$
 + HNO, [3]

but since olefin formation is not possible, coupling occurred forming  $C_2H_6$ . Secondary reaction of the  $C_2H_6$  (as above) occurred forming  $C_2H_4 + H_2$ . In the present work, oxygen was always available, either from  $NO_2$  or from  $O_2 + NO$ . No  $CH_3$ · coupling was observed, although dehydrogenation of  $C_3$  and  $C_4$  paraffins to olefins was. Coupling of  $2 CH_3$ · could not be expected in the presence of the much higher concentrations of NO or  $NO_2$ ; both are radical traps, but  $NO_2$  is also a strong oxidizing agent. Thus  $CH_3$ · may be produced at lower temperatures either catalytically or by

$$CH_4 + NO_2 \rightarrow CH_3 + OH + NO.$$
 [4]

Recently, Bromly *et al.* (8) reported on the homogeneous reactions of *n*-butane in air modulated by NO over a temperature range 600 to 720 K. Low concentrations of NO in the *n*-butane/air system promoted oxidation of *n*-butane; conversely, low concentrations of *n*-butane in air promoted the oxidation of NO to NO<sub>2</sub>. The latter process was accompanied by the consumption of *n*-butane and the formation of  $C_3H_7CHO$ , CO, HCHO,  $(CH_3)_2CO$ , various butenes, and propene. These workers assumed that the free radical processes were initiated by reaction of  $O_2$  (0.2 atm) directly with *n*-butane, i.e.,

$$n-C_4H_{10} + O_2 \rightarrow C_4H_9 + HO_2$$
 [5]

rather than by reaction with NO as postulated previously (9). Then  $NO_2$  was formed by

$$NO + HO_2 \rightarrow NO_2 + \cdot OH$$
 [6]

and the  $C_4H_9$ · was regenerated by reaction of ·OH with n- $C_4H_{10}$  forming  $H_2O$ . Alkyl radicals readily add  $O_2$  forming peroxy radicals and thus leading to subsequent chemistry. Trace quantities (as little as 0.02 ppm) of NO had a profound promoting effect on these reactions by virtue of the ability of NO to convert relatively unreactive  $HO_2$  into

reactive HO· radicals that regenerated the C<sub>4</sub>H<sub>9</sub>· as described above. Other important reactions of NO included  $RO_2 \cdot + NO \rightarrow RO \cdot + NO_2$  and  $NO + HO \cdot + M = HONO$ + M. The above-mentioned products accounted for more than 80% of the measured consumption of the *n*-butane. Interestingly, N<sub>2</sub> was not found among the reaction products. In these studies when 90 ppm of NO was introduced into a stream of air containing excess (600 ppm) n-butane, the NO was quantitatively converted to NO<sub>2</sub>. The residence time in the reactor was about 5 sec, a value similar to that used in the present work. In the temperature range investigated (603 to 723 K), the chemical equilibrium in mixtures of NO, NO<sub>2</sub>, and O<sub>2</sub> strongly favors NO<sub>2</sub>. The possible role of this compound as a chain initiator or an oxygen transfer agent was not considered by these workers. In the present work (Fig. 7A), NO<sub>2</sub> was quantitatively converted to NO (in the absence of O<sub>2</sub>) by reaction with hydrocarbons. Unfortunately, our facilities did not permit the determination of NO<sub>2</sub>/NO in the presence of O<sub>2</sub>. Hence, we were unable to obtain the distribution in the tail gas from the system NO<sub>2</sub>, O<sub>2</sub>, CH<sub>4</sub>. Further work is needed to clarify the apparent contradictions. Undoubtedly some of this same chemistry is occurring in the homogeneous reactions of  $i-C_4H_{10}$  and  $C_3H_8$  reported herein. Alkyl radicals react with O2 forming ROO and these peroxy radicals react with NO forming  $NO_2 + RO \cdot$ . Evidently NO and NO<sub>2</sub> are interconvertable during combustion. As shown in Fig. 8, olefins, as well as CO and CO<sub>2</sub>, were formed and a portion of these paraffins was unaccounted for over part of the conversion range. We may suppose, therefore, that aldehydes and ketones were included in the missing reacted hydrocarbon. Probably these compounds were intermediates in the combustion process when catalysts were employed, but were further burned to CO<sub>2</sub> and H<sub>2</sub>O. N<sub>2</sub> was formed only in the presence of a catalyst. We suppose, as did Yokoyama and Misono (10), that organic nitro compounds are deposited on the catalyst in small amounts and that these react with  $NO_x$  forming an N-N bond leading to release of  $N_2$ . These workers also showed that CH<sub>3</sub>NO<sub>2</sub> reacted with O<sub>2</sub> over CuZSM-5 to release N<sub>2</sub> together with a small amount of N<sub>2</sub>O. If CH<sub>3</sub> is present, reaction with NO<sub>2</sub> to form CH<sub>3</sub>NO<sub>2</sub> might also be expected.

A referee has called our attention to an apparent contradiction on the effects of  $O_2$  in heterogeneous vs homogeneous systems. With the former,  $O_2$  greatly enhances the reduction of NO to  $N_2$  whereas with the homogeneous systems near equilibrium conversion of NO to  $NO_2$  results from the reaction of  $HO_2$ · with NO. Here it is generally assumed that the reaction is initiated by reaction of the hydrocarbon with the much larger concentration of  $O_2$  forming  $HO_2$  and the corresponding hydrocarbon radical; formation of  $NO_2$  results. We have assumed that since  $NO_2$  is a stronger oxidizing agent than  $O_2$ , it can preferen-

tially initiate radical formation in the presence of much lower concentrations of  $O_2$  than that in air. Our data (Figs. 5 and 6) show that  $CH_4$  can be burned with  $NO_2$  alone or with  $O_2$  and with or without a catalyst. It also shows that  $N_2$  is not formed in the absence of a catalyst. With a catalyst, the evidence suggests that  $NO_2$  is readily formed from NO and  $O_2$  (explaining the great rate enhancement on  $O_2$  oxidation) and that it is  $NO_2$  that then initiates formation of the first hydrocarbon radicals. Either NO or  $NO_2$ , or both, may be required for  $N_2$  formation and the catalyst is required to form and hold the organic nitro compound needed for coupling of the N-N bond.

The route to form CO<sub>r</sub> has been investigated for the CH<sub>4</sub> coupling reaction. Lin et al. (11) proposed that an important source of carbon oxides is the homogeneous oxidation of methyl radicals through the formation and reaction of the methylperoxy radical, CH<sub>3</sub>O<sub>2</sub>. On rearrangement, this may form formaldehyde and HO radical. The HO· may then react with CH<sub>4</sub> to form H<sub>2</sub>O and regenerate the methyl radical. The formaldehyde is readily burned to CO<sub>2</sub> and H<sub>2</sub>O. As shown in the work described above (8, 9), the introduction of stable free radicals NO or NO<sub>2</sub> will modify this chemistry, but free radical reactions will remain dominant. Over the zeolite catalysts, Tong and Lunsford (12) suggested that CH<sub>3</sub>. reacts mainly by a reductive addition process to form surface methoxide ions. On transition metal ion sites, these are readily oxidized to carboxylates and ultimately to CO<sub>2</sub>. The analogous combustion chemistry found in the present work does not support the idea that a completely different mechanism is operative in the catalyzed and uncatalyzed reactions. Instead our results suggest that the catalyst simply decreases the temperature required to produce a given rate by  $\sim 100$  K (probably more for CuZSM-5). Blank experiments carried out earlier (4), using the same blends of CH<sub>4</sub>, i-C<sub>4</sub>H<sub>10</sub> or neo-C<sub>9</sub>H<sub>20</sub> with NO and  $O_2$  as in the catalytic experiments, showed similar chemistry. No N<sub>2</sub> formation occurred, but combustion was observed at a light-off temperature of about 850 K for CH<sub>4</sub> and 773 K for the other two gases. Complete combustion to CO<sub>2</sub> and H<sub>2</sub>O was observed above 873 K, i.e., at temperatures ~100 K higher than with CoZSM-5 (35% exchanged). Interestingly, neononane, the largest molecule, was among the fastest burning. In the present work these measurements were extended to include homogeneous reactions of hydrocarbons with NO2 and  $NO_2 + O_2$  mixtures.

The foregoing paragraphs have dealt mainly with the chemistry of combustion processes. The key question of how dinitrogen is formed remains unanswered. The data of Fig. 1 show that  $NO_2$  is a ready source of oxygen which may appear as  $O_2$  or be used to attack hydrocarbons directly. It also seems evident that  $NO_2$  is a better oxidizing agent than  $O_2$ , although whether this is sufficient to

274 LUKYANOV ET AL.

offset the large concentration difference usually present in SCR is uncertain. Alternative explanations have been advanced concerning many aspects of the underlying chemistry. Most of this earlier work has focused on the reduction of NO to N<sub>2</sub> with the questions concerning the oxidation of the hydrocarbon relegated to secondary status. It has been our intention to refocus thought to view this interesting chemistry as a competitive oxidation where three oxidizing agents are available to react with the hydrocarbon, viz., NO<sub>2</sub>, O<sub>2</sub>, and NO. It is already known (4a, 4b) that the selectivity for N<sub>2</sub> formation decreases very dramatically as NO<sub>x</sub> is consumed so that at high conversions, combustion with O<sub>2</sub> becomes dominant. The present paper will not settle the questions of mechanism. It has been our intention to point out that homogeneous combustion is a free radical process, that the character of these results is altered materially by the presence of small amounts of NO<sub>x</sub> and that the NO/NO<sub>2</sub> couple can act as an oxygen carrier, as can a catalyst. Our previous work (4a, 4b) with large hydrocarbons has suggested that the reactions over ZSM-5 and Ferrierite catalysts may not be entirely heterogeneous. The present work shows analogous behavior over these catalysts and in the empty reactor with the significant difference that N<sub>2</sub> does not form in the absence of the solid catalysts. We attribute this to the necessity of retaining some organic nitro intermediates on the surface that function to form the N-N bond. How much the picture developed herein will need to be modified remains to be seen. We can only hope that looking at SCR from this different perspective will prove helpful.

### **CONCLUSIONS**

- (i) The results of this work suggest that the SCR reaction involves free radical chemistry and may be partly homogeneous
- (ii) These reactions are initiated on the catalyst surface (probably on the exterior of the particles or at the pore mouths). Combustion may be initiated in the homogeneous gas phase at somewhat higher temperatures.
  - (iii) NO<sub>2</sub> appears to be involved in initiating radical

formation; an important function of  $O_2$  may be to convert NO into  $NO_2$ .

- (iv)  $N_2$  formation requires a catalyst; combustion does not, suggesting that an intermediate is formed on the catalyst surface which can couple with NO or  $NO_2$  to form the N-N bond.
- (v) In the absence of a catalyst, combustion is not initiated by either NO or  $O_2$  alone up to 873 K, but light-off occurs below 773 K when both are present, and at still lower temperatures with  $NO_2$ . This homogeneous combustion imposes an upper limit on the temperature for the SCR of  $NO_x$  by hydrocarbons in the presence of excess  $O_2$ .

#### **ACKNOWLEDGMENTS**

The authors are grateful to Air Products and Chemicals and to the Ford Motor Co. for support of this work.

#### REFERENCES

- 1. Petunchi, J. O., and Hall, W. K., Appl. Catal. B 2, L17 (1993).
- (a) Cowan, A. D., Dumpelmann, R., and Cant, N. W., J. Catal.
   151, 356 (1995); (b) Cant, N. W., Kennedy, E. M., and Nelson, P. F., J. Phys. Chem. 97, 1445 (1993).
- Zhang, X., Walters, A. B., and Vannice, M. A., J. Catal., 146, 568 (1994).
- (a) Witzel, F. O., Sill, G. A., and Hall, W. K., J. Catal., 149, 229 (1994);
   (b) in "Zeolites and Related Microporous Materials, State of the Art" (J. Weitkamp, H. J. G. Karge, H. Pfeiffer, and W. Holderich, Eds.), Studies in Surface Science and Catalysis, Vol. 84, Part C, No. 84, p. 153. Elsevier, Amsterdam, 1994.
- (a) Shelef, M., Montreuil, C. N., and Jen, H. W. Catal. Lett. 26, 277 (1994);
   (b) Chajar, Z., Primet, M., Praliand, H., Chevier, M., Gautier, C., Mathis, F., Catal. Lett. 28, 33 (1994).
- (a) Petunchi, J. O., Sill, G. A., and Hall, W. K., Appl. Catal. B 2, 303 (1993);
   (b) Hall, W. K., J. Catal. 1, 53 (1962); J. Phys. Chem. 71, 1005 (1967).
- 7. Li, Y., and Armor, J. N., Appl. Catal. B 3, L1 (1993).
- 8. Bromly, J. H., Barnes, F. J., Mandyczewski, R., Edwards, T. J., and Haynes, B. S., in "Proceedings, 24th International Symposium on Combustion." p. 899. The Combustion Institute, Pittsburgh, PA, 1992.
- Wojciechowski, B. W., and Laidler, K. J., Can. J. Chem. 38, 1027 (1968).
- 10. Yokoyama, C., and Misono, M., J. Catal. 150, 9 (1994).
- Lin, C. H., Ito, T., Wang, J. X., and Lunsford, J. H., J. Catal. 111, 302 (1988).
- 12. Tong, Y., and Lunsford, J. H., J. Am. Chem. Soc. 113, 4741 (1991).